29 research outputs found

    Dynamic risk management in fire and rescue emergency operations

    Get PDF
    Firefighting is an inherently dangerous occupation involving numerous risk sources, unique contexts, multiple personnel and rapidly changing environments. Firefighting operations are dynamic in nature yet require calculated risk taking and structured command to prevent the realisation of potentially catastrophic outcomes to both casualties and rescuers. The notion of “dynamic risk management” is a term that has gained popularity throughout fire services worldwide, yet the process of dynamic risk management is typically poorly articulated. This study demonstrates ‘dynamic risk management’ is a misnomer, with risk management being a defined process applied within the context of dynamic emergency response. Failure to recognise this and respond accordingly may leave fire services exposed to adverse findings should adverse consequences be realised. Further, this study tested the perceptions of risk held by incident controllers in the Department of Fire and Emergency Services in Western Australia against AS31000, through a combination of qualitative surveys and subsequent Bayesian analysis of reported adverse outcomes resulting from all hazards emergency response. This study found significant variance in risk tolerance between incident controllers and to a lesser degree, variance in the understanding of risk as defined by AS31000. Bayesian statistical analysis identified reportable adverse outcomes were almost certain to occur across the majority of firefighting activities, whilst potential worst case outcomes were rarely historically realised. The results of this study demonstrate that it is critical for firefighting organisations to have documented risk thresholds and to provide greater education of risk management in dynamic situations to incident controllers of all ranks

    Wildfire suppression – an international analysis of operations, strategy and firefighter safety

    Get PDF
    Wildfire suppression remains an inherently dangerous yet increasingly frequent task for fire services throughout Australia and the world. Each year firefighters from career and volunteer agencies respond to wildfires that impact the urban interface. When such an event occurs during a period of intense fire behaviour the conditions are often incompatible with life for persons either caught in the open or those seeking refuge in a vehicle. In order to improve firefighter safety and operational effectiveness at the rural urban interface (RUI) during landscape scale wildfires, this dissertation serves to examine critical components of wildfire response, most notably wildfire suppression strategies and tactics applied during a landscape scale wildfire event and the procedures and protective systems utilised in the event of firefighter entrapment and burnover. The theme of the research is firefighter safety and suppression effectiveness during mega-wildfire response at the rural urban interface (RUI), also known as the wildland urban interface (WUI). Mega-wildfires are those landscape wildfires that overwhelm firefighting resources, typically generate their own localized weather systems, and require campaign style efforts lasting extended durations. Wildfire events including Margaret River (2011), and Yarloop (2016) in Western Australia, the devastating Californian and Greece wildfires (2018) and the unprecedented wildfires throughout eastern Australia in late 2019 / early 2020 meet this category. The RUI is the land where towns and cities exist alongside forest and other vegetation that supports the development of an established headfire with a quasi-steady rate of spread (RoS) across the landscape. In such instances, firefighters are called on to protect vulnerable communities and critical infrastructure from the ember storms, radiant heat and flames that accompany the head fire. In doing so, firefighters face great personal peril. If the incorrect suppression tactics or strategies are applied, or if wildfire behaviour suddenly changes, firefighter entrapment and burnover resulting in significant injury or fatality remains an all too common consequence. The studies not only quantify the severity of the conditions firefighters encounter when attempting to protect life, property and the environment at the RUI, but also find traditional wildfire suppression strategies and tactics at the RUI need to be reexamined. Whilst the field of wildfire engineering is in its infancy, the studies suggest its development and adoption into wildfire suppression operations has the potential to improve both operational effectiveness and firefighter safety

    A review of the standard of care owed to Australian firefighters from a safety perspective—The differences between academic theory and legal obligations

    Get PDF
    Working in high consequence yet low frequency, events Australian fire service Incident Controllers are required to make critical decisions with limited information in time-poor environments, whilst balancing competing priorities and pressures, to successfully solve dynamic large-scale disaster situations involving dozens of personnel within the Incident Management Team, including of front-line responders from multiple jurisdictions. They must also do this within the boundaries of public and political expectations, industrial agreements, and the legal requirement to maintain a safe workplace for all workers, inclusive of volunteers. In addition to these operational objectives, fire services must also provide realistic training to prepare frontline staff, whilst satisfying legislative requirements to provide a safe workplace under legislation that does not distinguish between emergency services and routine business contexts. In order to explore this challenge, in this article we review the different safety standards expected through industrial and legal lenses, and contextualize the results to the firefighting environment in Australia. Whilst an academic argument may be presented that firefighting is a reasonably unique workplace which exposes workers to a higher level of harm than many other workplaces, and that certain levels of firefighter injury and even fatality are acceptable, no exception or distinction is provided for the firefighting context within the relevant safety legislation. Until such time that fire services adopt the legal interpretations and applications and develop true safety management systems as opposed to relying on “dynamic risk assessment” as a defendable position, the ability of fire services and individual Incident Controllers to demonstrate they have managed risk as so far as reasonably practicable will remain ultimately problematic from a legal perspective

    Death at sea - the true rate of occupational fatality within the Australian commercial fishing industry

    Get PDF
    Although the safety performance of the Australian commercial fishing industry has been the subject of multiple investigations, it has ultimately remained undefined. While most Australian industries notify industry regulators of significant workplace incidents and injuries in their operations, the majority of persons in the commercial fishing industry are contractors who are paid piecework and in some jurisdictions specifically excluded from the worker compensation legislation, meaning that most occupational injuries, including fatalities, are not captured in the centralized worker compensation data sets. This study presents the analysis of a systematic review of industry databases, published academic, and, Australian coroners reports to assist improve the definition of the nation\u27s commercial fishing industry safety performance. The analysis shows occupational fatality rates are significantly higher than currently reported, and recurring factors contributing to deaths at sea remain unaddressed. The study is significant as it demonstrates how workplace injuries and deaths can be hidden within data sets applying broad industry classification and provides a foundation for future research in Australian fishing and other industries

    A handbook of wildfire engineering: Guidance for wildfire suppression and resilient urban design

    Get PDF
    A Handbook of Wildfire Engineering (the Handbook) provides firefighters, engineers and town planners with detailed technical approaches and analysis to enhance the resilience of communities in areas prone to wildfire impacts, and enhance the safety and effectiveness of wildfire suppression at the urban interface during catastrophic wildfire condition

    Calculation of critical water flow rates for wildfire suppression

    Get PDF
    Predicting water suppression requirements and its impacts on firefighting strategies and logistics within the urban environment has been the subject of many previous studies, however the same level of research has yet to be applied in the realm of wildfire suppression. To work towards addressing this knowledge gap, this paper provides guidance for Incident Controllers in relation to critical water flow rates required to extinguish large wildfire across a wide range of forest fuel loads, fire weather and active fire front depths. This is achieved through mathematical empirical analysis of water flow rates required for head fire suppression during 540 simulated wildfires in forest vegetation. This research applies a fire engineering approach to wildfire suppression logistics and deterministically assess the suitability of appliance and aircraft based head fire suppression. The results highlight the limitations of offensive wildfire suppression involving direct head fire attacks by appliances once wildfires attain a quasi-steady state in forest fuels

    Threat assessment, sense making, and critical decision-making in police, military, ambulance, and fire services

    Get PDF
    Military and emergency response remain inherently dangerous occupations that require the ability to accurately assess threats and make critical decisions under significant time pressures. The cognitive processes associated with these abilities are complex and have been the subject of several significant, albeit service specific studies. Here, we present an attempt at finding the commonalities in threat assessment, sense making, and critical decision-making for emergency response across police, military, ambulance, and fire services. Relevant research is identified and critically appraised through a systematic literature review of English-language studies published from January 2000 through July 2020 on threat assessment and critical decision-making theory in dynamic emergency service and military environments. A total of 10,084 titles and abstracts were reviewed, with 94 identified as suitable for inclusion in the study. We then present our findings focused on six lines of enquiry: Bibliometrics, Language, Situation Awareness, Critical Decision Making, Actions, and Evaluation. We then thematically analyse these findings to reveal the commonalities between the four services. Despite existing single or dual service studies in the field, this research is significant in that it is the first examine decision making and threat assessment theory across all four contexts of military, police, fire and ambulance services, but it is also the first to assess the state of knowledge and explore the extent that commonality exists and models or practices can be applied across each discipline. The results demonstrate all military and emergency services personnel apply both intuitive and formal decision-making processes, depending on multiple situational and individual factors. Institutional restriction of decision-making to a single process at the expense of the consideration of others, or the inappropriate training and application of otherwise appropriate decision-making processes in certain circumstances is likely to increase the potential for adverse outcomes, or at the very least restrict peak performance being achieved. The applications of the findings of the study not only extend to facilitating improved practice in each of the individual services examined, but provide a basis to assist future research, and contribute to the literature exploring threat assessment and decision making in dynamic contexts

    Significant benefits of AIP testing and clinical screening in familial isolated and young-onset pituitary tumors

    Get PDF
    Context Germline mutations in the aryl hydrocarbon receptor-interacting protein (AIP) gene are responsible for a subset of familial isolated pituitary adenoma (FIPA) cases and sporadic pituitary neuroendocrine tumors (PitNETs). Objective To compare prospectively diagnosed AIP mutation-positive (AIPmut) PitNET patients with clinically presenting patients and to compare the clinical characteristics of AIPmut and AIPneg PitNET patients. Design 12-year prospective, observational study. Participants & Setting We studied probands and family members of FIPA kindreds and sporadic patients with disease onset ≀18 years or macroadenomas with onset ≀30 years (n = 1477). This was a collaborative study conducted at referral centers for pituitary diseases. Interventions & Outcome AIP testing and clinical screening for pituitary disease. Comparison of characteristics of prospectively diagnosed (n = 22) vs clinically presenting AIPmut PitNET patients (n = 145), and AIPmut (n = 167) vs AIPneg PitNET patients (n = 1310). Results Prospectively diagnosed AIPmut PitNET patients had smaller lesions with less suprasellar extension or cavernous sinus invasion and required fewer treatments with fewer operations and no radiotherapy compared with clinically presenting cases; there were fewer cases with active disease and hypopituitarism at last follow-up. When comparing AIPmut and AIPneg cases, AIPmut patients were more often males, younger, more often had GH excess, pituitary apoplexy, suprasellar extension, and more patients required multimodal therapy, including radiotherapy. AIPmut patients (n = 136) with GH excess were taller than AIPneg counterparts (n = 650). Conclusions Prospectively diagnosed AIPmut patients show better outcomes than clinically presenting cases, demonstrating the benefits of genetic and clinical screening. AIP-related pituitary disease has a wide spectrum ranging from aggressively growing lesions to stable or indolent disease course

    I’ve spent 14 years on bushfire front lines and seen courage in the face of death

    No full text

    Exploring ISO31000 Risk Management during Dynamic Fire and Emergency Operations in Western Australia

    Get PDF
    Firefighting remains an inherently dangerous occupation with serious injuries and fatalities reported globally. The Australasian Fire Authorities Council adopt ISO31000 as the standard of risk management for all firefighting and mitigation operations. However, previous studies have reported that decisions made by incident controllers during dynamic emergencies are typically reactionary and only partially compliant with the ISO31000 process. This paper describes research using new qualitative and quantitative data that support incident controllers in managing risk during dynamic fire and emergency situations, in accordance with ISO31000. The research was completed through two studies. The first study explored risk attitudes of serving fire service officers through semistructured interviews and in-depth structured surveys. The second study identified the severity of firefighting consequences and likelihood through analysis of Western Australian fire service safety and incident reports between January 1st, 2001 and January 1st, 2015. The overall and conditional probability of specific injuries during the various tasks undertaken during emergency incidents was calculated using Bayesian statistical analysis. The findings indicate that whilst current practices are arguably effective in preventing worst case consequences being realised, improvements in operational risk management can be made in accordance with ISO31000 during emergencies and in pre-incident planning
    corecore